Angora: Efficient Fuzzing by Principled Search

نویسندگان

  • Peng Chen
  • Hao Chen
چکیده

Fuzzing is a popular technique for finding software bugs. However, the performance of the state-of-the-art fuzzers leaves a lot to be desired. Fuzzers based on symbolic execution produce quality inputs but run slow, while fuzzers based on random mutation run fast but have difficulty producing quality inputs. We propose Angora, a new mutation-based fuzzer that outperforms the state-of-the-art fuzzers by a wide margin. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution. To solve path constraints efficiently, we introduce several key techniques: scalable byte-level taint tracking, context-sensitive branch count, search based on gradient descent, and input length exploration. On the LAVA-M data set, Angora found almost all the injected bugs, found more bugs than any other fuzzer that we compared with, and found eight times as many bugs as the second-best fuzzer in the program who. Angora also found 103 bugs that the LAVA authors injected but could not trigger. We also tested Angora on eight popular, mature open source programs. Angora found 6, 52, 29, 40 and 48 new bugs in file, jhead, nm, objdump and size, respectively. We measured the coverage of Angora and evaluated how its key techniques contribute to its impressive performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exploratory Survey of Hybrid Testing Techniques Involving Symbolic Execution and Fuzzing

Recent efforts in practical symbolic execution have successfully mitigated the path-explosion problem to some extent with search-based heuristics and compositional approaches. Similarly, due to an increase in the performance of cheap multi-core commodity computers, fuzzing as a viable method of random mutation-based testing has also seen promise. However, the possibility of combining symbolic e...

متن کامل

Reviewing KLEE's Sonar-Search Strategy in Context of Greybox Fuzzing

Automatic test-case generation techniques of symbolic execution and fuzzing are the most widely used methods to discover vulnerabilities in, both, academia and industry. However, both these methods suffer from fundamental drawbacks that stop them from achieving high path coverage that may, consequently, lead to discovering vulnerabilities at the numerical scale of static analysis. In this prese...

متن کامل

Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach

Fuzzing and symbolic execution are popular techniques for finding vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox method that mutates seed input values, is generally incapable of generating diverse inputs that exercise all paths in the program. Due to the path-explosion problem and dependence on SMT solvers, symbolic execution may also not achieve high path coverage....

متن کامل

Not all bytes are equal: Neural byte sieve for fuzzing

Fuzzing is a popular dynamic program analysis technique used to find vulnerabilities in complex software. Fuzzing involves presenting a target program with crafted malicious input designed to cause crashes, buffer overflows, memory errors, and exceptions. Crafting malicious inputs in an efficient manner is a difficult open problem and often the best approach to generating such inputs is through...

متن کامل

H-Fuzzing: A New Heuristic Method for Fuzzing Data Generation

How to efficiently reduce the fuzzing data scale while assuring high fuzzing veracity and vulnerability coverage is a pivotal issue in program fuzz test. This paper proposes a new heuristic method for fuzzing data generation named with H-Fuzzing. H-Fuzzing achieves a high program execution path coverage by retrieving the static information and dynamic property from the program. Our experiments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018